An Evaluation of Two NEXRAD Wind Retrieval Methodologies and Their Use in Atmospheric Dispersion Models

Author:

Fast Jerome D.1,Newsom Rob K.1,Allwine K. Jerry1,Xu Qin2,Zhang Pengfei2,Copeland Jeffrey3,Sun Juanzhen3

Affiliation:

1. Pacific Northwest National Laboratory, Richland, Washington

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Two entirely different methods for retrieving 3D fields of horizontal winds from Next Generation Weather Radar (NEXRAD) radial velocities have been evaluated using radar wind profiler measurements to determine whether routine wind retrievals would be useful for atmospheric dispersion model applications. The first method uses a physical algorithm based on four-dimensional variational data assimilation, and the second simpler method uses a statistical technique based on an analytic formulation of the background error covariance. Both methods can be run in near–real time, but the simpler method was executed about 2.5 times as fast as the four-dimensional variational method. The observed multiday and diurnal variations in wind speed and direction were reproduced by both methods below ∼1.5 km above the ground in the vicinity of Oklahoma City, Oklahoma, during July 2003. However, wind retrievals overestimated the strength of the nighttime low-level jet by as much as 65%. The wind speeds and directions obtained from both methods were usually similar when compared with profiler measurements, and neither method outperformed the other statistically. Within a dispersion model framework, the 3D wind fields and transport patterns were often better represented when the wind retrievals were included along with operational data. Despite uncertainties in the wind speed and direction obtained from the wind retrievals that are higher than those from remote sensing radar wind profilers, the inclusion of the wind retrievals is likely to produce more realistic temporal variations in the winds aloft than would be obtained by interpolation using the available radiosondes, especially during rapidly changing synoptic- and mesoscale conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference25 articles.

1. Allwine, K. J., M. J.Leach, L. W.Stockham, J. H.Shinn, R. P.Hosker, J. F.Bowers, and J.Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Preprints, Symp. on Planning, Nowcasting and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., J7.1. [Available online at http://ams.confex.com/ams/pdfpapers/74349.pdf.].

2. Climatology of the low-level jet.;Bonner;Mon. Wea. Rev.,1968

3. Improved WSR-88D scanning strategies for convective storms.;Brown;Wea. Forecasting,2000

4. The determination of kinematic properties of a wind field using Doppler radar.;Browning;J. Appl. Meteor.,1968

5. Analysis and forecasting of the low-level wind during the Sydney 2000 Forecast Demonstration Project.;Crook;Wea. Forecasting,2004

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3