Characteristics of Vertical Circulation in the Convective Boundary Layer over the Huaihe River Basin in China in the Early Summer of 2004

Author:

Endo Satoshi12,Shinoda Taro1,Hiyama Tetsuya1,Uyeda Hiroshi1,Nakamura Kenji1,Tanaka Hiroki2,Tsuboki Kazuhisa13

Affiliation:

1. Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan

2. Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

3. Frontier Research Center for Global Change, Yokohama, Japan

Abstract

AbstractThe purpose of this study is to clarify the characteristics of the convective boundary layer (CBL) over a humid terrestrial area, the Huaihe River basin in China, which is covered by a large, nearly flat plain with uniform farmland. Data were collected in early summer 2004 using a 32-m flux tower and a 1290-MHz wind profiler radar. When mature wheat fields or bare fields dominated (the first period), the sensible heat flux (SHF) from the land surface was nearly equal to the latent heat flux (LHF). After vegetation changed to paddy fields (the second period), the LHF was much larger than the SHF. Two clear days from the first and second periods were selected and are referred to as the dry case and wet case, respectively. For the dry case, a deep CBL developed rapidly from the early morning, and thermal updrafts in the CBL were vigorous. For the wet case, a shallow CBL developed slowly from late morning, and thermals were weak. To study the thermodynamic process in the CBL, a large-eddy simulation (LES) was conducted. The simulation adequately reproduced the surface heat flux and the CBL development for both the dry case and the wet case. For the dry case, sensible heat contributed to nearly all of the buoyancy flux. In contrast, for the wet case, heat and moisture made equal contributions. The large contribution of moisture to the buoyancy is one of the main characteristics of the CBL over humid terrestrial areas.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3