Mount Kenya Global Atmosphere Watch Station (MKN): Installation and Meteorological Characterization

Author:

Henne Stephan1,Junkermann Wolfgang2,Kariuki Josiah M.3,Aseyo John3,Klausen Jörg1

Affiliation:

1. Swiss Federal Institute for Materials Science and Technology (Empa), Dübendorf, Switzerland

2. Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung IFU, Garmisch-Partenkirchen, Germany

3. Kenya Meteorological Department, Nairobi, Kenya

Abstract

Abstract The meteorological conditions at the Mount Kenya (station identifier MKN) tropical Global Atmosphere Watch Programme station are described. Like other stations in mountainous terrain, the site experiences thermally induced wind systems that disturb free tropospheric conditions. Therefore, the adequacy of the site for long-term background atmospheric composition measurements needs to be evaluated. Meteorological parameters for the period June 2002–June 2006 were analyzed, focusing on the development of thermally induced wind systems and boundary layer influence. Filters based on the local wind and day–night differences in specific humidity were developed for selection of times representative of undisturbed free tropospheric conditions. In addition, the convective boundary layer depth was evaluated. Throughout the whole year the station is influenced by thermally induced wind systems and the atmospheric boundary layer. The filters distinguished between thermally and synoptically influenced days. Thermally influenced days (86%) dominated. However, maxima in specific humidity were also reached in the afternoon on synoptically influenced days and were attributed to mixing in the convective boundary layer. During nighttime, downslope wind dominated that carries undisturbed free tropospheric air masses. Nevertheless, during 24% of all nights the specific humidity was also elevated, possibly indicating the presence of residual layers. It is recommended that nighttime data only (2100–0400 UTC) be used for analysis of long-term trends of the free tropospheric background while the remaining data can be used to characterize composition and trends of the regional atmospheric boundary layer. Further exclusion of apparent pollution events and residual layer influence should be considered. With these constraints, the Mount Kenya Global Atmosphere Watch site is adequate for the study of trends and budgets of background atmospheric composition.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Tropical Meteorology.;Asnani,1993

2. The Mauna Loa observatory photochemistry experiment: Introduction.;Atlas;J. Geophys. Res.,1996

3. Global Atmosphere Watch adds six new stations.;Brenninkmeijer;Eos, Trans. Amer. Geophys. Union,1996

4. The daily cycle of weather on Mount Kenya.;Davies;Weather,1977

5. Condensation nuclei and weather on Mount Kenya.;Davies;J. Appl. Meteor.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3