A Distinctly Interdecadal Signal of Pacific Ocean–Atmosphere Interaction

Author:

Frauenfeld Oliver W.1,Davis Robert E.2,Mann Michael E.2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

2. Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia

Abstract

Abstract A new and distinctly interdecadal signal in the climate of the Pacific Ocean has been uncovered by examining the coupled behavior of sea surface temperatures (SSTs) and Northern Hemisphere atmospheric circulation. This interdecadal Pacific signal (IPS) of ocean–atmosphere interaction exhibits a highly statistically significant interdecadal component yet contains little to no interannual (El Niño scale) variability common to other Pacific climate anomaly patterns. The IPS thus represents the only empirically derived, distinctly interdecadal signal of Pacific Ocean SST variability that likely also represents the true interdecadal behavior of the Pacific Ocean–atmosphere system. The residual variability of the Pacific’s leading SST pattern, after removal of the IPS, is highly correlated with El Niño anomalies. This indicates that by simply including an atmospheric component, the leading mode of Pacific SST variability has been decomposed into its interdecadal and interannual patterns. Although the interdecadal signal is unrelated to interannual El Niño variability, the interdecadal ocean–atmosphere variability still seems closely linked to tropical Pacific SSTs. Because prior abrupt changes in Pacific SSTs have been related to anomalies in a variety of physical and biotic parameters throughout the Northern Hemisphere, and because of the persistence of these changes over several decades, isolation of this interdecadal signal in the Pacific Ocean–atmosphere system has potentially important and widespread implications to climate forecasting and climate impact assessment.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3