Decadal Modulation of Trans-basin Variability on Extended Boreal Summer Tropical Cyclone Activity in the Tropical North Pacific and Atlantic Basins

Author:

Chen Shaohua1,Zhao Haikun2,Klotzbach Philp J.3,Raga Graciela B.4,Cao Jian5,Wang Chao5

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education, Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, 210044, China

2. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, 210044, China

3. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

4. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico (ORCID: 0000-0002-4295-4991)

5. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China

Abstract

AbstractThis study analyzes decadal modulation of trans-basin variability (TBV) on extended boreal summer (May-October) tropical cyclone frequency (TCF) over the western North Pacific (WNP), central-eastern North Pacific (CENP) and North Atlantic (NATL) basins. There are distinct decadal regimes (P1:1979-1997, P2:1998-2008, and P3:2009-2019) with changes in the interannual relationship between TBV and TCF over these three basins. During P1 and P3, there is a significant inter-annual TBV-TCF relationship over the CENP and NATL, but these relationships become insignificant during P2. Changes in the interannual TBV-TCF relationship over the WNP are opposite to those over the CENP and NATL basins, with significant relationship during P2 but insignificant relationship during P1 and P3. Changes in all three basins coincide with decadal changes in large-scale parameters associated with TBV. Consistent basin-wide changes in lower-tropospheric vorticity (vertical wind shear) associated with TBV appear to be largely responsible for changes in total TCF over the NATL (CENP) during P1 and P3. In contrast, a dipole pattern in lower-tropospheric vorticity and vertical wind shear anomalies associated with TBV over the NATL and CENP basins occurs during P2, leading to an insignificant interannual TBV-TCF relationship over the NATL and CENP basins. Over the WNP, a basin-wide consistent distribution of lower-tropospheric vorticity associated with TBV is consistent with changes in total TCF during P2, while a dipole correlation pattern between TBV-associated factors and TCF during P1 and P3 leads to a weak correlation between TBV and WNP TCF. These three distinct observed decadal regimes may be associated with interactions between ENSO and the Pacific Decadal Oscillation on decadal timescales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3