Predictability of Marine Heatwaves off Western Australia Using a Linear Inverse Model

Author:

Wang Yuxin12ORCID,Holbrook Neil J.12,Kajtar Jules B.123

Affiliation:

1. a Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

2. b Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Tasmania, Australia

3. c National Oceanography Centre, Southampton, United Kingdom

Abstract

Abstract Marine heatwaves (MHWs) off Western Australia (110°–116°E, 22°–32°S; herein, WA MHWs) can cause devastating ecological impacts, as was evidenced by the 2011 extreme event. Previous studies suggest that La Niña is the major large-scale driver of WA MHWs, while the Indian Ocean dipole (IOD) may also play a role. Here, we investigate historical WA MHWs and their connections to these large-scale climate modes in an ocean model (ACCESS-OM2) simulation driven by a prescribed atmosphere from JRA-55-do over 1959–2018. Rather than analyzing sea surface temperature, the WA MHWs and climate mode indices were characterized and investigated in vertically averaged temperature (VAT) to ∼300-m depth to afford the longer ocean dynamic time scales, including remote oceanic connections. We develop a cyclostationary linear inverse model (CS-LIM; from 35°S to 10°N, across the Indo-Pacific Ocean), to investigate the relative contributions of La Niña VAT and positive IOD VAT to the predictability of WA VAT MHWs. Using a large ensemble of CS-LIM simulations, we found that ∼50% of WA MHWs were preceded about 5 months by La Niña, and 30% of the MHWs by positive IOD about 20 months prior. While precursor La Niña or positive IOD, on their own, were found to correspond with increased WA MHW likelihood in the months following (∼2.7 times or ∼1.5 times more likely than by chance, respectively), in combination these climate mode phases were found to produce the largest enhancement in MHW likelihood (∼3.2 times more likely than by chance). Additionally, we found that stronger and longer La Niña and/or positive IOD tend to lead stronger and longer WA MHWs. Significance Statement This study examines seasonal-to-interannual time-scale predictability of marine heatwaves off Western Australia. We developed and applied a linear inverse model, informed by numerical model results, to generate a large number of 60-yr temperature simulations across the broader Indian–Pacific Ocean region to quantify this marine heatwave predictability. We found that La Niña typically increases the likelihood of marine heatwaves off Western Australia about 5 months (3–7 months) later, while positive Indian Ocean dipole events increase their likelihood about 20 months (18–22 months) later. Marine heatwaves can severely impact local marine ecosystems and the economy. Our findings are expected to be valuable for marine heatwave prediction system development on time scales that can be beneficial to marine ecosystem conservation and fishery management.

Funder

China Scholarship Council

University of Tasmania

Australian Research Council (ARC) Centre of Excellence for Climate Extremes

National Environmental Science Program (NESP) Climate Systems Hub

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference68 articles.

1. Aberson, C. L., 2015: Statistical power analysis. Emerging Trends in the Social and Behavioral Sciences, R. A. Scott and S. M. Kosslyn, Eds., John Wiley & Sons, 1–14.

2. The 1970’s shift in ENSO dynamics: A linear inverse model perspective;Aiken, C. M.,2013

3. Forecasting Pacific SSTs: Linear inverse model predictions of the PDO;Alexander, M. A.,2008

4. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks;Arias-Ortiz, A.,2018

5. Evaluation of the ECMWF ocean reanalysis system ORAS4;Balmaseda, M. A.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3