The inherent uncertainty of precipitation variability, trends, and extremes due to internal variability, with implications for Western US water resources

Author:

McKinnon Karen A.1,Deser Clara2

Affiliation:

1. 1 Department of Statistics and Institute of the Environment and Sustainability; University of California, Los Angeles; Los Angeles, CA 90095

2. 2 National Center for Atmospheric Research; Boulder, CO 80305

Abstract

AbstractThe approximately century-long instrumental record of precipitation over land reflects a single sampling of internal variability. Thus, the spatiotemporal evolution of the observations is only one realization of `what could have occurred' given the same climate system and boundary conditions, but different initial conditions. While climate models can be used to produce initial-condition large ensembles that explicitly sample different sequences of internal variability, an analogous approach is not possible for the real world. Here, we explore the use of a statistical model for monthly precipitation to generate synthetic ensembles based on a single record. When tested within the context of the NCAR Community Earth System Model version 1 Large Ensemble (CESM1-LE), we find that the synthetic ensemble can closely reproduce the spatiotemporal statistics of variability and trends in winter precipitation over the extended contiguous United States, and that it is difficult to infer the climate change signal in a single record given the magnitude of the variability. We additionally create a synthetic ensemble based on the Global Precipitation Climatology Centre (GPCC) dataset, termed the GPCC-synth-LE; comparison of the GPCC-synth-LE with the CESM1-based ensembles reveals differences in the spatial structures and magnitudes of variability, highlighting the advantages of an observationally-based ensemble. We finally use the GPCC-synth-LE to analyze three water resource metrics in the Upper Colorado River Basin: frequency of dry, wet, and whiplash years. Thirty-one year ‘climatologies’ in the GPCC-synth-LE can differ by over 20% in these key water resource metrics due to sampling of internal variability, and individual ensemble members in the GPCC-synth-LE can exhibit large near-monotonic trends over the course of the last century due to sampling of variability alone.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3