Spatial and Seasonal Isotope Variability in Precipitation across China: Monthly Isoscapes Based on Regionalized Fuzzy Clustering

Author:

Wang Shengjie12,Lei Shijun12,Zhang Mingjun12,Hughes Catherine3,Crawford Jagoda3,Liu Zhongfang4,Qu Deye12

Affiliation:

1. a College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

2. b Key Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou, China

3. c Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales, Australia

4. d State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Abstract

Abstract The spatial patterns of stable hydrogen and oxygen isotopes in precipitation (precipitation isoscapes) provide a geographic perspective to understand the atmospheric processes in modern environment and paleoclimate records. Here we compiled stable isotope data in modern precipitation at 223 sites across China and 48 in surrounding countries, and used regionalized fuzzy clustering to create monthly precipitation isoscapes for China (C-Isoscape). Based on regressions using spatial and climatic parameters for 12 months, the best-fitting equations were chosen for four climate clusters, and then the four layers were weighted using fuzzy membership. The moisture transportation path, controlled by the westerlies and the monsoon, results in different spatial and seasonal diversity of precipitation isotopes. Based on C-Isoscape, we determined a nationwide meteoric water line as δ2H = 7.4δ18O + 5.5 using least squares regression or δ2H = 8.0δ18O + 10.2 using precipitation weighted reduced major axis regression. Compared with previous global products, the C-Isoscape usually shows precipitation more enriched in 18O and 2H in summer and more depleted in winter for northwest China, while the C-Isoscape values are more enriched in heavy isotopes in most months for southwest China. The new monthly precipitation isoscapes provide an accurate and high-resolution mapping for Chinese precipitation isotopes, allowing for future intra-annual atmospheric process diagnostics using stable hydrogen and oxygen isotope in precipitation in the region.

Funder

National Natural Science Foundation of China

Gansu Science and Technology Department

Northwest Normal University

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference262 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3