Possible impacts of December Laptev sea ice on Indian Ocean Dipole conditions during spring

Author:

Chen Ping1,Sun Bo123,Wang Huijun123,Zhu Baoyan1

Affiliation:

1. a Center for Climate System Prediction Research/Collaborative Innovation Center on forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

2. b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

3. c Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of sciences, Beijing, China

Abstract

AbstractThis study investigates the relationship and underlying mechanisms between the Indian Ocean Dipole (IOD) and Arctic sea ice. The results reveal that the preceding December sea ice over the Laptev Sea plays an important role in the formation of positive IOD conditions during April–June (AMJ). In years with positive December Laptev sea ice anomalies, the zonal wavenumber-1 (ZWN1) planetary wave component is stimulated at middle and high latitudes. The high-latitude ZWN1 propagates upward to the stratosphere and downward to the troposphere in December, affects the atmospheric circulation over the North Atlantic, and further leads to a warm sea surface temperature anomaly (SSTA) that persists until the following February. The mid-latitude ZWN1 propagates upward to the stratosphere in January and downward to the troposphere in February, contributing to the positive 200-hPa geopotential height anomaly (GPHA) in the subtropical Atlantic. The ascending anomaly induced by the warm SSTA and the positive 200-hPa GPHA in the subtropical Atlantic in February are favorable for effective Rossby wave source formation and stimulate an atmospheric wave train that forms an anomalous cyclone over the northern Arabian Sea, which contributes to enhanced convection over North India, stimulating an anomalous anticyclone over East India and leading to reduced convection over the northeastern Indian Ocean in March. The reduced convection over the northeastern Indian Ocean may lead to strengthened equatorial easterly winds and further contribute to positive IOD conditions in AMJ. These findings indicate that December Laptev sea ice may contribute to AMJ IOD conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3