What Modulates the Intensity of Synoptic-Scale Variability over the Western North Pacific during Boreal Summer and Fall?

Author:

Wu Renguang123,Wang Yuqi24,Cao Xi2

Affiliation:

1. a School of Earth Sciences, Zhejiang University, Hangzhou, China

2. b Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. c Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

4. d College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Abstract

AbstractThe present study investigates the factors that affect the year-to-year change in the intensity of synoptic-scale variability (SSV) over the tropical western North Pacific (TWNP) during boreal summer and fall. It is found that the intensity of the TWNP SSV in summer is associated with the equatorial central-eastern Pacific sea surface temperature (SST) anomalies that modulate the background fields through a Rossby wave response both in the source region and along the propagation path of the synoptic-scale disturbances. In fall, the intensity of the TWNP SSV is related to an SST anomaly pattern with opposite anomalies in the equatorial central Pacific and TWNP that modulates the background fields from the equatorial central Pacific to TWNP. However, the equatorial central Pacific SST anomalies alone fail to change the intensity of the TWNP SSV as the induced background field changes are limited to the equatorial central Pacific. It is shown that tropical western Pacific SST anomalies may induce notable changes in the intensity of the TWNP SSV. The relation of the TWNP SSV to the equatorial eastern Pacific SST is weak due to opposite SST anomalies in different types of years. Both seasonal mean and intraseasonal flows provide sources of barotropic energy for the change in the intensity of the TWNP synoptic-scale disturbances in summer. Seasonal mean flow has a main contribution to the barotropic energy conversion for the change in the intensity of the TWNP synoptic-scale disturbances in fall.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3