Evaluating the eastward propagation of the MJO in CMIP5 and CMIP6 models based on a variety of diagnostics

Author:

Abstract

Abstract Given the climatic importance of the Madden-Julian Oscillation (MJO), this study evaluates the capability of CMIP6 models in simulating MJO eastward propagation in comparison with their CMIP5 counterparts. To understand the representation of MJO simulation in models, a set of diagnostics in respect of MJO-associated dynamic and thermodynamic structures are applied, including large-scale zonal circulation, vertical structures of diabatic heating and equivalent potential temperature, moisture convergence at planetary boundary layer (PBL), and the east-west asymmetry of moisture tendency relative to the MJO convection. The simulated propagation of the MJO in CMIP6 models shows an overall improvement on realistic speed and longer distance, which displays robust linear regression relationship against above-mentioned dynamic and thermodynamic structures. The improved MJO propagation in CMIP6 largely benefits from better representation of pre-moistening processes that is primarily contributed by improved PBL moisture convergence. In addition, the convergence of moisture and meridional advection of moisture prior to the MJO convection are enhanced in CMIP6, while the zonal advection of moisture is as weak as that in CMIP5. The increased convergence of moisture is a result of enhanced lower-tropospheric moisture and divergence, and the enhanced meridional advection of moisture can be caused by sharpened meridional gradient of mean low-tropospheric moisture in the western Pacific. Further examinations on lower-tropospheric moisture budget reveals that the enhanced zonal asymmetry of the moisture tendency in CMIP6 is driven by the drying process to the west of the MJO convection, which is accredited to the negative vertical and zonal advections of moisture.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3