The Contribution of Internal Variability to Asian Midlatitude Warming

Author:

Feng Xiaofang1,Wu Liguang23

Affiliation:

1. a Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

2. b Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

3. c Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, China

Abstract

AbstractThe tropospheric warming in the Northern Hemisphere (NH) midlatitudes has been an important factor in regulating weather and climate since the twentieth century. Apart from anthropogenic forcing leading to the midlatitude warming, this study investigates the possible contribution of internal variability to Asian midlatitude warming and its role in East Asian circulation changes in boreal summer, using four reanalysis datasets in the past century and a set of 1800-yr preindustrial control simulations of the Community Earth System Model version 1 large ensemble (CESM-LE). The surface and tropospheric warming in the Asian midlatitudes is associated with a strong upper-level geopotential height rise north of the Tibetan Plateau (TP). Linear trends of 200-hPa geopotential height (Z200) confirm a dipole of an anomalous high north of the TP and an anomalous low over the Iranian Plateau in 1958–2017. The leading internal circulation mode bears a striking resemblance to the Z200 trend in the past 60 and 111 years, indicating that the long-term trend may be partially of internal origin. The Asian midlatitude warming is also found in preindustrial simulations of CESM-LE, further suggesting that internal variability explains at least part of the temperature change in the Asian midlatitudes, which is in a chain of wave trains along the NH midlatitudes. The Asian warming decreases the meridional gradient of geopotential height, resulting in the weakening of westerly winds over the TP and the TP thermal forcing. Thus, it is essential to consider the role of internal variability in shaping East Asian surface temperature and East Asian summer monsoon changes in the past decades.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3