Heat Balance in the Nordic Seas in a Global 1/12° Coupled Model

Author:

Treguier Anne Marie1,Mathiot Pierre2,Graham Tim2,Copsey Dan2,Lique Camille1,Sterlin Jean3

Affiliation:

1. a Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Oceanographie Physique et Spatiale, IUEM, Brest, France

2. b Met Office, Exeter, United Kingdom

3. c Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract

AbstractThe Nordic seas are a gateway to the Arctic Ocean, where Atlantic water undergoes a strong cooling during its transit. Here we investigate the heat balance of these regions in the high-resolution Met Office Global Coupled Model GC3 with a 1/12° grid. The GC3 model reproduces the contrasted ice conditions and ocean heat loss between the eastern and western regions of the Nordic seas. In the west (Greenland and Iceland seas), the heat loss experienced by the ocean is stronger than the atmospheric heat gain, because of the cooling by ice melt. The latter is a major contribution to the heat loss over the path of the East Greenland Current and west of Svalbard. In the model, surface fluxes balance the convergence of heat in each of the eastern and western regions. The net east–west heat exchange, integrated from Fram Strait to Iceland, is relatively small: the westward heat transport of the Return Atlantic Current over Knipovich Ridge balances the eastward heat transport by the East Icelandic Current. Time fluctuations, including eddies, are a significant contribution to the net heat transports. The eddy flux represents about 20% of the total heat transport in Denmark Strait and across Knipovich Ridge. The coupled ocean–atmosphere–ice model may overestimate the heat imported from the Atlantic and exported to the Arctic by 10% or 15%. This confirms the tendency toward higher northward heat transports as model resolution is refined, which will impact scenarios of future climate.

Funder

BEIS Defra

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3