Southward cold airmass flux associated with the East Asian winter monsoon: Diversity and impacts

Author:

Liu Qian1,Chen Guixing1,Wang Lin2,Kanno Yuki3,Iwasaki Toshiki4

Affiliation:

1. School of Atmospheric Sciences, Sun Yat-sen University, and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

2. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan

4. Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Abstract

AbstractThe winter monsoon has strong impacts on East Asia via latitude-crossing southward cold airmass fluxes called cold air outbreaks (CAOs). CAOs have a high diversity in terms of meridional extent and induced weather. Using the daily cold airmass flux normalized at 50°N and 30°N during 1958–2016, we categorize the CAOs into three groups: high–middle (H–M), high–low (H–L) and middle–low (M–L) latitude events. The H–L type is found to have the longest duration, and the M–L type is prone to the strong CAOs regarding normalized intensity. The H–L and H–M events feature a large-scale dipole pattern of cold airmass flux over high-latitude Eurasia, and the former (latter) events feature relatively strong anticyclonic circulation over Siberia (cyclonic circulation over northeastern Asia). In contrast, the M–L events are characterized by a cyclonic anomaly over northeastern Asia but no obvious high-latitude precursor. The H–L events have the greatest coldness anomaly in airmasses near the surface, and the M–L events mainly feature a strong northerly wind. As a result, the H–L events induce widespread long-lasting low temperatures over East Asia, while the M–L events induce a sharp temperature drop at mainly low latitudes. Both H–L and M–L events coupling with the MJO enhance rainfall over the South China Sea, while H–M events increase rainfall over southern China. Moreover, the occurrences of H–L and M–L events experience a long-term decrease since the 1980s, which induce a stronger warming trend in the cold extremes than in the winter mean temperature at mid-low latitudes over East Asia.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3