An Improved Ensemble of Land Surface Air Temperatures Since 1880 Using Revised Pair-Wise Homogenization Algorithms Accounting for Autocorrelation

Author:

Chan Duo12ORCID,Gebbie Geoffrey2,Huybers Peter3

Affiliation:

1. a School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

2. b Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

3. c Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract Land surface air temperatures (LSAT) inferred from weather station data differ among major research groups. The estimate by NOAA’s monthly Global Historical Climatology Network (GHCNm) averages 0.02°C cooler between 1880 and 1940 than Berkeley Earth’s and 0.14°C cooler than the Climate Research Unit estimates. Such systematic offsets can arise from differences in how poorly documented changes in measurement characteristics are detected and adjusted. Building upon an existing pairwise homogenization algorithm used in generating the fourth version of NOAA’s GHCNm(V4), PHA0, we propose two revisions to account for autocorrelation in climate variables. One version, PHA1, makes minimal modification to PHA0 by extending the threshold used in breakpoint detection to be a function of LSAT autocorrelation. The other version, PHA2, uses penalized likelihood to detect breakpoints through optimizing a model-selection problem globally. To facilitate efficient optimization for series with more than 1000 time steps, a multiparent genetic algorithm is proposed for PHA2. Tests on synthetic data generated by adding breakpoints to CMIP6 simulations and realizations from a Gaussian process indicate that PHA1 and PHA2 both similarly outperform PHA0 in recovering accurate climatic trends. Applied to unhomogenized GHCNmV4, both revised algorithms detect breakpoints that correspond with available station metadata. Uncertainties are estimated by perturbing algorithmic parameters, and an ensemble is constructed by pooling 50 PHA1- and 50 PHA2-based members. The continental-mean warming in this new ensemble is consistent with that of Berkeley Earth, despite using different homogenization approaches. Relative to unhomogenized data, our homogenization increases the 1880–2022 trend by 0.16 [0.12, 0.19]°C century−1 (95% confidence interval), leading to continental-mean warming of 1.65 [1.62, 1.69]°C over 2010–22 relative to 1880–1900. Significance Statement Accurately correcting for systematic errors in observational records of land surface air temperature (LSAT) is critical for quantifying historical warming. Existing LSAT estimates are subject to systematic offsets associated with processes including changes in instrumentation and station movement. This study improves a pairwise homogenization algorithm by accounting for the fact that climate signals are correlated over time. The revised algorithms outperform the original in identifying discontinuities and recovering accurate warming trends. Applied to monthly station temperatures, the revised algorithms adjust trends in continental mean LSAT since the 1880s to be 0.16°C century−1 greater relative to raw data. Our estimate is most consistent with that from Berkeley Earth and indicates lesser and greater warming than estimates from NOAA and the Met Office, respectively.

Funder

Division of Ocean Sciences

Division of Earth Sciences

Publisher

American Meteorological Society

Reference32 articles.

1. A homogeneity test applied to precipitation data;Alexandersson, H.,1986

2. Distinguishing trends and shifts from memory in climate data;Beaulieu, C.,2018

3. Simulated annealing;Bertsimas, D.,1993

4. Global and regional discrepancies between early-twentieth-century coastal air and sea surface temperature detected by a coupled energy-balance analysis;Chan, D.,2023

5. Homogenization of climate data: Review and new perspectives using geostatistics;Costa, A. C.,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3