A New Approach to Homogenize Global Subdaily Radiosonde Temperature Data from 1958 to 2018

Author:

Zhou Chunlüe1,Wang Junhong12,Dai Aiguo1,Thorne Peter W.3

Affiliation:

1. a Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

2. b New York State Mesonet, University at Albany, State University of New York, Albany, New York

3. c Irish Climate Analysis and Research Units, Department of Geography, Maynooth University, Maynooth, Ireland

Abstract

AbstractThis study develops an innovative approach to homogenize discontinuities in both mean and variance in global subdaily radiosonde temperature data from 1958 to 2018. First, temperature natural variations and changes are estimated using reanalyses and removed from the radiosonde data to construct monthly and daily difference series. A penalized maximal F test and an improved Kolmogorov–Smirnov test are then applied to the monthly and daily difference series to detect spurious shifts in the mean and variance, respectively. About 60% (40%) of the changepoints appear in the mean (variance), and ~56% of them are confirmed by available metadata. The changepoints display a country-dependent pattern likely due to changes in national radiosonde networks. Mean segment length is 7.2 (14.6) years for the mean (variance)-based detection. A mean (quantile)-matching method using up to 5 years of data from two adjacent mean (variance)-based segments is used to adjust the earlier segments relative to the latest segment. The homogenized series is obtained by adding the two homogenized difference series back to the subtracted reference series. The homogenized data exhibit more spatially coherent trends and temporally consistent variations than the raw data, and lack the spurious tropospheric cooling over North China and Mongolia seen in several reanalyses and raw datasets. The homogenized data clearly show a warming maximum around 300 hPa over 30°S–30°N, consistent with model simulations, in contrast to the raw data. The results suggest that spurious changes are numerous and significant in the radiosonde records and our method can greatly improve their homogeneity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3