The Impact of Interactive Ocean Dynamics on Atlantic Sea Surface Temperature Variability

Author:

Gozdz Olivia1,Buckley Martha W.1ORCID,DelSole Timothy1

Affiliation:

1. a George Mason University, Fairfax, Virginia

Abstract

Abstract The impact of interactive ocean dynamics on internal variations of Atlantic sea surface temperature (SST) is investigated by comparing preindustrial control simulations of a fully coupled atmosphere–ocean–ice model to the same atmosphere–ice model with the ocean replaced by a motionless slab layer (henceforth slab ocean model). Differences in SST variability between the two models are diagnosed by an optimization technique that finds components whose variance differs as much as possible. This technique reveals that Atlantic SST variability differs significantly between the two models. The two components with the most extreme enhancement of SST variance in the slab ocean model resemble the tripole SST pattern associated with the North Atlantic Oscillation (NAO) and the Atlantic multidecadal variability (AMV) pattern. This result supports previous claims that ocean dynamics are not necessary for the AMV, although ocean dynamics lead to slight increases in the memory of both the AMV and the NAO tripole. The component with the most extreme enhancement of SST variance in the fully coupled model resembles the Atlantic Niño pattern, confirming the ability of our technique to isolate physical modes known to require ocean dynamics. The second component with more variance in the fully coupled model is a mode of subpolar SST variability. Both the reemergence of SST anomalies and changes in ocean heat transport lead to increased SST variance and memory in the subpolar Atlantic. Despite large differences in the mean and variability of SST, atmospheric variability is quite similar between the two models, confirming that most atmospheric variability is generated by internal atmospheric dynamics.

Funder

National Aeronautics and Space Administration

Climate Program Office

Directorate for Geosciences

Earth Sciences Division

Publisher

American Meteorological Society

Reference103 articles.

1. Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble;Bellomo, K.,2018

2. Scale dependence of midlatitude air–sea interaction;Bishop, S. P.,2017

3. Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning;Böning, C. W.,2006

4. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability;Booth, B. B. B.,2012

5. Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review;Buckley, M. W.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3