Variations in Summer Extreme High-Temperature Events over Northern Asia and the Possible Mechanisms

Author:

Abstract

AbstractIn this study, interannual and interdecadal variations in the extreme high-temperature event (EHE) frequency over northern Asia (NA) and the associated possible mechanisms are explored. On an interannual time scale, the first two empirical orthogonal function modes of the NA EHE frequency exhibit a meridional dipole pattern (EOF1) and diagonal tripolar pattern (EOF2), respectively. The higher NA EHE frequency is related to anomalous local highs, reduced mid- to low clouds, and more solar radiation. The warmer ground further heats the overlying atmosphere through longwave radiation and sensible heat. The warm temperature advection in the lower troposphere and the drier soil conditions also favor higher EHE frequency. Further analysis reveals that the EOF1 mode is related to the Polar–Eurasian teleconnection pattern (POL), while the EOF2 mode is associated with North Atlantic Oscillation (NAO) and Pacific–Japan/East Asia–Pacific pattern (PJ/EAP). The fitted EHE frequency based on the atmospheric factors (POL, NAO, and PJ/EAP) can explain the interannual variation in the regionally averaged EHE frequency by 33.8%. Furthermore, three anomalous sea surface temperature (SST) patterns over the North Atlantic–Mediterranean Sea region and around the Maritime Continent are associated with the two EHE modes by intensifying the pronounced atmospheric teleconnections. Analysis on the simulation of five models in the Atmospheric Model Intercomparison Project experiment further confirms the impact of the pronounced SST patterns on the POL, NAO and PJ/EAP. In addition, NA EHE frequency experienced a significant interdecadal increase around the mid-1990s, which could be associated with the phase shift of the Atlantic multidecadal oscillation and long-term global warming trend.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3