Distinct Off-Equatorial Zonal Wind Stress and Oceanic Responses for EP- and CP-Type ENSO Events

Author:

McGregor Shayne12ORCID,Dommenget Dietmar12,Neske Sonja13

Affiliation:

1. a School of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia

2. b Centre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia

3. c GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Abstract

Abstract This study utilizes observations and a series of idealized experiments to explore whether eastern Pacific (EP)- and central Pacific (CP)-type El Niño–Southern Oscillation (ENSO) events produce surface wind stress responses with distinct spatial structures. We find that the meridionally broader sea surface temperatures (SSTs) during CP events lead to zonal wind stresses that are also meridionally broader than those found during EP-type events, leading to differences in the near-equatorial wind stress curl. These wind spatial structure differences create differences in the associated pre- and post-ENSO event WWV response. For instance, the meridionally narrow winds found during EP events have (i) weaker wind stresses along 5°N and 5°S, leading to weaker Ekman-induced pre-event WWV changes; and (ii) stronger near-equatorial wind stress curls that lead to a much larger post-ENSO event WWV changes than during CP events. The latter suggests that, in the framework of the recharge oscillator model, the EP events have stronger coupling between sea surface temperatures (SST) and thermocline (WWV), supporting more clearly the phase transition of ENSO events, and therefore, the oscillating nature of ENSO than CP events. The results suggest that the spatial structure of the SST pattern and the related differences in the wind stress curl, are required along with equatorial wind stress to accurately model the WWV changes during EP- and CP-type ENSO events.

Funder

Australian Research Council

Australian Research Council Centre of Excellence for Climate Extremes

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference130 articles.

1. Nonlinear controls on the persistence of La Niña;DiNezio;J. Climate,2014

2. ENSO regimes: Reinterpreting the canonical and Modoki El Niño;Takahashi;Geophys. Res. Lett.,2011

3. The ACCESS coupled model: Description, control climate and evaluation;Bi;Aust. Meteor. Oceanogr. J.,2013

4. An Introduction to the Dynamics of El the Southern Oscillation Academic;Clarke,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3