Decadal Variability of the Pacific Shallow Overturning Circulation and the Role of Local Wind Forcing

Author:

Capotondi Antonietta12ORCID,Qiu Bo3

Affiliation:

1. a Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. b NOAA/Physical Sciences Laboratory, Boulder, Colorado

3. c Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

Abstract The Pacific shallow meridional overturning circulations, known as subtropical cells (STCs), link subduction in the subtropical regions to equatorial upwelling, suggesting the possibility for subtropical winds to influence equatorial sea surface temperatures (SSTs) by altering the STCs’ strength. Indeed, STC variability provides the basis for one of the mechanisms proposed to explain the origin of tropical Pacific decadal variability (TPDV). While the relationship between STC strength, as measured by their subsurface transport convergence, and equatorial SST variations is well documented, the location of the wind forcing most influential on STC variability is still being debated. In this study, we use the output of an ocean reanalysis to examine tropical Pacific Ocean surface and subsurface decadal changes during recent decades and relate them to STC variability and surface wind forcing. Our results indicate that the STC interior transport at each latitude is largely controlled by the wind forcing at that latitude rather than induced by remote subtropical wind variations. We also show that the establishment of the anomalous transport at each latitude is associated with the westward propagation of oceanic wind-forced Rossby waves, as part of the ocean adjustment process that also leads to a zonal redistribution of upper-ocean heat content at both interannual and decadal time scales. These results provide guidance for understanding the origin of TPDV by elucidating the underlying dynamics of STC variability and can have practical implications for monitoring STC variability in the tropical Pacific. Significance Statement Slow variations of the surface ocean temperature in the tropical Pacific Ocean have been shown to affect the global climate. Our study aims at better understanding the origin of these temperature anomalies by taking a closer look at the upper ocean circulation variability and its relationship with surface wind forcing. Unlike previous studies, which have related the upper ocean circulation changes to wind variations outside the tropical Pacific, we show here that the variations in upper-ocean circulation are primarily driven by local winds. This result not only clarifies which winds are most important, but also suggests a practical approach for monitoring circulation changes from surface observations.

Funder

Climate Program Office

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference73 articles.

1. Forcing for multidecadal surface solar radiation trends over Northern Hemisphere continents;Augustine, J. A.,2022

2. Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.

3. Recent shifts in the state of the North Pacific;Bond, N. A.,2003

4. The effective number of spatial degrees of freedom of a time-varying field;Bretherton, C. S.,1999

5. Rossby waves in the tropical North Pacific and their role in decadal thermocline variability;Capotondi, A.,2001

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3