Fronts and Cyclones Associated with Changes in the Total and Extreme Precipitation over China

Author:

Wu Xinxin12ORCID,Tan Xuezhi132,Liu Bingjun132,Chen Han4,Chen Xiaohong12

Affiliation:

1. a Center of Water Resources and Environment, Sun Yat-sen University, Guangzhou, China

2. c School of Civil Engineering, Sun Yat-sen University, Guangzhou, China

3. b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China

4. d Hubei Institute of Water Resources Survey and Design, Wuhan, China

Abstract

Abstract Precipitation in China is controlled by a combination of multiple weather systems and is susceptible to their spatiotemporal variability under climate warming. Based on the daily precipitation dataset developed by the China Meteorological Administration and ERA5 6-hourly data from 1979 to 2018, we detected tropical cyclones, extratropical cyclones, and fronts affecting mainland China of an altitude less than 1500 m using objective methods and identified their individually associated precipitation. We quantified climatological characteristics of precipitation associated with these three meteorological causes and their proportion of precipitation totals, and evaluated their relative contribution to change in precipitation. Results show that precipitation associated with tropical cyclones (TCP), extratropical cyclones (ETCP), and fronts (FRTP) accounted for 3.0%, 21.2%, and 20.4% of the total precipitation in China, and constituted the largest percentage in August, June, and January, respectively. The total proportion of these three types of precipitation exceeded 50% in more than 55% of China’s regions. The high-value regions of corresponding precipitation were directly related to the locations of frequent occurrences of these weather systems. TCP and FRTP increased over the past four decades, while ETCP decreased. The western part of Northeast China and the middle and upper reaches of the Yangtze River show precipitation decreases, 37.8% of which is contributed by ETCP decreases. Precipitation increased in most regions of China during the dry season, 34.1% of which is contributed by FRTP increases. Among them, Northeast (Northwest) China significantly increased it precipitation by 14.4% decade−1 (21.8% decade−1), 33.6% (51.3%) of which is contributed by FRTP increases.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference107 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3