Projected Changes in Atmospheric Ridges over the Pacific–North American Region Using CMIP6 Models

Author:

Loikith Paul C.1,Singh Deepti2,Taylor Graham P.1

Affiliation:

1. a Department of Geography, Portland State University, Portland, Oregon

2. b School of the Environment, Washington State University, Vancouver, Washington

Abstract

Abstract Projected changes in atmospheric ridges and associated temperature and precipitation anomalies are assessed for the end of the twenty-first century in a suite of 27 models contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6) under a high-end emissions scenario over the Pacific–North American region. Ridges are defined as spatially coherent regions of positive zonal anomalies in 500-hPa geopotential height. The frequency of ridge days in the historical period varies by geography and season; however, ridge days are broadly more common over the region in winter and least common in summer. The CMIP6 models are credible in reproducing key features of reanalysis-derived ridge climatology. The CMIP6 models also reproduce historical temperature and precipitation anomalies associated with ridges. These associations include positive temperature anomalies over and to the west/northwest of the ridge peak and negative precipitation anomalies southeast of the ridge peak. Future projections show a general decrease in ridge days across most of the region in fall through spring, with considerable model agreement. Projections for summer are different, with robust projections of increases in the number of ridge days across parts of the interior western United States and Canada. The CMIP6 models project modest decreases in the probability of stronger ridges and modest increases in the probability of weaker ridges in fall and winter. Future ridges show similar temperature and precipitation anomaly associations as in the historical climate period, when future anomalies are computed relative to future climatology. Significance Statement Atmospheric ridges over the Pacific–North American region are a type of atmospheric circulation pattern associated with important weather and climate impacts. These impacts include heatwaves and drought. This study uses climate models to understand how ridges and their impacts may change under future climate warming. The results suggest that ridge days will be less common across parts of the domain in fall, winter, and spring. In summer, an increase in ridge days is projected in a region centered on Montana. Results suggest that temperature and precipitation patterns associated with ridges will change at a similar rate to the overall mean climate. This work provides evidence that continued climate warming will alter atmospheric circulation over the Pacific–North American region in complex ways.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3