Tropical and subtropical forcing of future southern hemisphere stationary wave changes

Author:

Patterson Matthew1,Woollings Tim1,Bracegirdle Thomas J.2

Affiliation:

1. Atmospheric, Oceanic and Planetary Physics, University of Oxford, United Kingdom

2. British Antarctic Survey, Cambridge, United Kingdom

Abstract

AbstractStationary wave changes play a significant role in the regional climate change response in Southern Hemisphere (SH) winter. In particular, almost all CMIP5 models feature a substantial strengthening of the westerlies to the south of Australia and enhancement of the subtropical jet over the eastern Pacific in winter. In this study we investigate the mechanisms behind these changes, finding that the stationary wave response can largely be explained via reductions in the magnitude of the upper level Rossby wave source over the tropical / subtropical East Pacific. The Rossby wave source changes in this region are robust across the model ensemble and are strongly correlated with changes to low latitude circulation patterns, in particular, the projected southward migration of the Hadley cell and weakening of the Walker circulation. To confirm our mechanism of future changes, we employ a series of barotropic model experiments in which the barotropic model is given a background state identical to a particular CMIP5 model and an anomalous Rossby wave source is imposed. This simple approach is able to capture the primary features of the ensemble mean change, including the cyclonic anomaly south of Australia, and is also able to capture many of the inter-model differences. These findings will help to advance our understanding of the mechanisms underpinning SH extratropical circulation changes under climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3