Understanding the Global Three-dimensional Distribution of Precipitation Mean Particle Size with the Global Precipitation Measurement Mission

Author:

Han Mei12,Braun Scott A.2

Affiliation:

1. 1 Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland

2. 2 Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

AbstractThis study addresses the global distribution of precipitation mean particle size using data from the Global Precipitation Measurement (GPM) mission. The mass-weighted mean diameter, Dm, is a characteristic parameter of the precipitation particle size distribution (PSD), estimated from the GPM Combined Radar-Radiometer Algorithm (CORRA) using data from GPM’s dual-frequency precipitation radar and microwave imager. We examine Dm in individual precipitation systems in different climate regimes and investigate a six-year (2014-2020) global climatology within 70° N/S.The vertical structure of Dm is demonstrated with cases of deep convection, frontal rain and snow, and stratocumulus light rain. The Dm values, detectable by GPM, range from ~0.7 mm in stratocumulus precipitation to >3.5 mm in the ice layers of intense convection. Within the constraint of the 12-dBZ detectability threshold, the smallest annual mean Dm (~ 0.8 mm) are found in the eastern oceans, and the largest values (~ 2 mm) occur above the melting levels in convection over land in summer. The standard deviation of the annual mean is generally < 0.45 mm below 6 km.Climate regimes are characterized with Dm annual/seasonal variations, its convective/stratiform components, and vertical variabilities (2-10 km). The US Central Plains and Argentina are associated with the largest Dm in a deep layer. Tropical Africa has larger Dm and standard deviation than Amazon. Large convective Dm occurs at high latitudes of Eurasia and North America in summer; the southern hemisphere high latitudes have shallower systems with smaller Dm. Oceanic storm tracks in both hemispheres have relatively large Dm, particularly for convective Dm in winter. Relatively small Dm occurs over tropical oceans, including ITCZ, requiring further investigation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference158 articles.

1. A new perspective on Southern Hemisphere storm tracks;Hoskins;J. Climate,2005

2. andCoauthors Combined Radiometer Precipitation Algorithm Theoretical Basis Document version https gpm nasa gov sites default files Combined algorithm ATBD pdf;Olson;Radar,2018

3. Study and tests of improved rain estimates from the TRMM Precipitation Radar;Ferreira;J. Appl. Meteor.,2001

4. Measurements of raindrop breakup by using UHF wind profilers;Kobayashi;Geophys. Res. Lett.,2001

5. The distribution of rainfall over oceans from spaceborne radars;Berg;J. Appl. Meteor. Climatol.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3