Affiliation:
1. a Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Abstract
Abstract
The variability and predictability of tropical cyclone genesis frequency (TCGF) during 1973–2010 at both basinwide and sub-basin scales in the northwest Pacific are investigated using a 100-member ensemble of 60-km-resolution atmospheric simulations that are forced with observed sea surface temperatures (SSTs). The sub-basin regions include the South China Sea (SCS) and the four quadrants of the open ocean. The ensemble-mean results well reproduce the observed interannual-to-decadal variability of TCGF in the southeast (SE), northeast (NE), and northwest (NW) quadrants, but show limited skill in the SCS and the southwest (SW) quadrant. The skill in the SE and NE quadrants is responsible for the model’s ability to replicate the observed variability in basinwide TCGF. Above-normal TCGF is tied to enhanced relative SST (i.e., local SST minus tropical-mean SST) either locally or to the southeast of the corresponding regions in both the observations and ensemble mean for the SE, NE, and NW quadrants, but only in the ensemble mean for the SCS and the SW quadrant. These results demonstrate the strong SST control of TCGF in the SE, NE, and NW quadrants; both empirical and theoretical analyses suggest that ensembles of ∼10, 20, 35, and 15 members can capture the SST-forced TCGF variability in these three sub-basin regions and the entire basin, respectively. In the SW quadrant and the SCS, TCGF contains excessive noise, particularly in the observations, and thus shows low predictability. The variability and predictability of the large-scale atmospheric environment and synoptic-scale disturbances and their contributions to those of TCGF are also discussed.
Publisher
American Meteorological Society
Reference85 articles.
1. The Pacific Meridional Mode and ENSO: A review;Amaya, D. J.,2019
2. El Niño Modoki and its possible teleconnection;Ashok, K.,2007
3. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model;Bacmeister, J. T.,2018
4. Changes in intense tropical cyclone activity for the western North Pacific during the last decades derived from a regional climate model simulation;Barcikowska, M.,2017
5. Western North Pacific tropical cyclone intensity and ENSO;Camargo, S. J.,2005
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献