Implementation and Evaluation of a Double-Plume Convective Parameterization in NCAR CAM5

Author:

Abstract

Abstract Performance of global climate models (GCMs) is strongly affected by the cumulus parameterization (CP) used. Similar to the approach in GFDL AM4, a double-plume CP, which unifies the deep and shallow convection in one framework, is implemented and tested in the NCAR Community Atmospheric Model version 5 (CAM5). Based on the University of Washington (UW) shallow convection scheme, an additional plume was added to represent the deep convection. The shallow and deep plumes share the same cloud model, but use different triggers, fractional mixing rates, and closures. The scheme was tested in single-column, short-term hindcast, and AMIP simulations. Compared with the default combination of the Zhang–McFarlane scheme and UW scheme in CAM5, the new scheme tends to produce a top-heavy mass flux profile during the active monsoon period in the single-column simulations. The scheme increases the intensity of tropical precipitation, closer to TRMM observations. The new scheme increased subtropical marine boundary layer clouds and high clouds over the deep tropics, both in better agreement with observations. Sensitivity tests indicate that regime-dependent fractional entrainment rates of the deep plume are desired to improve tropical precipitation distribution and upper troposphere temperature. This study suggests that a double-plume approach is a promising way to combine shallow and deep convections in a unified framework.

Funder

National Key Research Project of China

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3