Very rare heat extremes: quantifying and understanding using ensemble re-initialization

Author:

Gessner Claudia1,Fischer Erich M.1,Beyerle Urs1,Knutti Reto1

Affiliation:

1. a Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

AbstractHeat waves such as the one in Europe 2003 have severe consequences for the economy, society, and ecosystems. It is unclear whether temperatures could have exceeded these anomalies even without further climate change. Developing storylines and quantifying highest possible temperature levels is challenging given the lack of long homogeneous time series and methodological framework to assess them. Here, we address this challenge by analysing summer temperatures in a nearly 5000-year pre-industrial climate model simulation, performed with the Community Earth System Model CESM1. To assess how anomalous temperatures could get, we compare storylines, generated by three different methods: (1) a return-level estimate, deduced from a generalized extreme value distribution, (2) a regression model, based on dynamic and thermodynamic heat wave drivers, and (3) a novel ensemble boosting method, generating large samples of re-initialized extreme heat waves in the long climate simulation.All methods provide consistent temperature estimates, suggesting that historical exceptional heat waves as in Chicago 1995, Europe 2003 and Russia 2010 could have been substantially exceeded even in the absence of further global warming. These estimated unseen heat waves are caused by the same drivers as moderate observed events, but with more anomalous patterns. Moreover, altered contributions of circulation and soil moisture to temperature anomalies include amplified feedbacks in the surface energy budget. The methodological framework of combining different storyline approaches of heat waves with magnitudes beyond the observational record may ultimately contribute to adaptation and to the stress testing of ecosystems or socio-economic systems to increase resilience to extreme climate stressors.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3