Impact of Developing ENSO on Tibetan Plateau Summer Rainfall

Author:

Hu Shuai12,Zhou Tianjun123,Wu Bo13

Affiliation:

1. a State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. b University of the Chinese Academy of Sciences, Beijing, China

3. c CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractThe year-to-year variations of Tibetan Plateau (TP) summer rainfall have tremendous climate impacts on the adjoining and even global climate, attracting extensive research attention in recent decades to understand the underlying mechanism. In this study, we investigate an open question of how El Niño–Southern Oscillation (ENSO) influences the TP precipitation. We show that the developing ENSO has significant impacts on the summer rainfall over the southwestern TP (SWTP), which is the second EOF mode of the interannual variability of summer rainfall over the TP. The moisture budget indicates that both the suppressed vertical motion and the deficit of moisture contribute to the reduction of SWTP rainfall during El Niño’s developing summer, with the former contribution 4 times larger than the latter. Moist static energy analyses indicate that the anomalous advection of climatological moist enthalpy by anomalous zonal wind is responsible for the anomalous descending motions over the SWTP. The El Niño–related southward displacements of the South Asian high and the upper-level cyclonic anomalies over the west of TP stimulated by the suppressed Indian summer monsoon precipitation are two key processes dominating the anomalous zonal moist enthalpy advection over SWTP. Meanwhile, the India–Burma monsoon trough is strengthened during El Niño developing summer, which prevents the advection of water vapor into the SWTP, and thus contributes to the deficit of summer SWTP rainfall. Our results help to understand the complicated ENSO-related air–sea interaction responsible for the variability of TP precipitation and have implications for seasonal prediction of the TP climate.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3