Homogenization of Observed Surface Wind Speed Based on Geostrophic Wind Theory over China from 1970 to 2017

Author:

Zhang Zhengtai1,Wang Kaicun2

Affiliation:

1. a College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

2. b Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China

Abstract

Abstract The observed surface wind speed (SWS) over China has declined in the past four decades, and recently, the trend has reversed, which is known as SWS stilling and recovery. The observed SWS is vulnerable to changes in nonclimatic factors, i.e., inhomogeneity. Unfortunately, most of the existing studies on the long-term trend of SWS were based on raw datasets without homogenization. In this study, by means of geostrophic wind speed and penalized maximal t test, we conduct a systematic homogeneity test and exploration of the homogenization impact for SWS at over 2000 stations in China from 1970 to 2017. The results show that the inhomogeneity in the observed SWS over China is detectable at 59% of national weather stations. The breakpoint years are mainly concentrated in the late 1970s, mid-1990s, and early 2000s. Overall, 18% of breakpoints are caused by station relocations, and the remaining breakpoints are likely related to anemometer replacement and measurement environment changes that occurred during the mid-1990s and early 2000s. After homogenization, the decreasing trend in SWS during 1970–2017 decreased from −0.15 to −0.05 m s−1 decade−1. The homogenized SWS recovery period advanced from the early twenty-first century to the early 1990s, which is consistent with the SWS variations, excluding the impact of urbanization around weather stations. The phase change in the Western Hemisphere warm pool (WHWP) might be one of the causes of homogenized SWS recovery.

Funder

Key Programme

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference78 articles.

1. A homogeneity test applied to precipitation data;Alexandersson, H.,1986

2. Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011;Azorin-Molina, C.,2014

3. An approach to homogenize daily peak wind gusts: An application to the Australian series;Azorin-Molina, C.,2019

4. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns;Barnston, A. G.,1987

5. Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model;Bichet, A.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3