How Does the Quasi-Biennial Oscillation Affect the Boreal Winter Tropospheric Circulation in CMIP5/6 Models?

Author:

Rao Jian1,Garfinkel Chaim I.2,White Ian P.2

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, and Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

2. Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

Abstract

AbstractUsing 17 CMIP5 and CMIP6 models with a spontaneously generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: 1) the Holtan–Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), 2) the subtropical zonal wind downward arching over the Pacific, and 3) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. First, seven models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the HT effect in the reanalysis. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the chain for QBO, vortex, and tropospheric NAM/AO is not simulated. For the second pathway associated with the downward arching of the QBO winds, 10 models simulate an inconsistent extratropical easterly anomaly center over 20°–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not present in those models, leading to no consensus on the height response over the North Pacific between those models and the reanalysis. However, the other seven models do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Seven models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the JRA55 reanalysis, and 10 models consistently confirm little modulation of the ocean basinwide Walker circulation and ENSO events by the QBO.

Funder

Young Scientists Fund

National Basic Research Program of China

H2020 European Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3