Atmospheric Blocking Trends and Seasonality around the Antarctic Peninsula

Author:

Marín Julio C.12,Bozkurt Deniz1234,Barrett Bradford S.5

Affiliation:

1. a Departamento de Meteorología, Universidad de Valparaíso, Valparaíso, Chile

2. b Centro de Estudios Atmosféricos y Astroestadística, Universidad de Valparaíso, Valparaíso, Chile

3. c Center for Climate and Resilience Research, Santiago, Chile

4. d Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile

5. e Oceanography Department, U.S. Naval Academy, Annapolis, Maryland

Abstract

Abstract We analyze the seasonal evolution and trends of atmospheric blocking from 1979 to 2018 using a geopotential-height-based method over two domains, one located to the west (150°–90°W, 50°–70°S) and the other over and to the east (90°–30°W, 50°–70°S) of the Antarctic Peninsula. Spatial patterns of geopotential heights on days with blocking feature well-defined ridge axes over and west of much of South America, and days with the most extreme blocking (above the 99th percentile) showed upper-tropospheric ridge and cutoff low features that have been associated with extreme weather patterns. Blocking days were found to be more frequent in the first half of the period (1979–98) than the second (1999–2018) in all seasons in the west domain, whereas they seem to be more common over the eastern (peninsula) domain in 1999–2018 for austral winter, spring, and autumn, although these differences were not statistically significant. West of the Antarctic Peninsula, blocking days occur most frequently when the Antarctic Oscillation (AAO) is negative, whereas they are more frequent over the peninsula when the AAO is positive. We propose that our blocking index can be used to indicate atmospheric blocking affecting the Antarctic Peninsula, similar to how the Greenland blocking index has been used to diagnose blocking, its trends, and impacts over the Arctic.

Funder

ANID/CONICYT

Fondazione Maria Piaggio Casarsa

FONDECYT

CONICYT

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3