Diurnal Variations in Rainfall and Precipitation Asymmetry of Tropical Cyclones in the Northwest Pacific Region

Author:

Zhang Xinyan12,Xu Weixin123

Affiliation:

1. 1 Sun Yat-Sen University, Zhuhai, China

2. 2 Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Guangzhou, China

3. 3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Abstract

AbstractThis study investigates diurnal variations of tropical cyclone precipitation in the northwest Pacific (NWP) region, including the South China Sea (SCS) and adjacent landmasses. Diurnal cycles of TC rainfall show significant land-sea contrasts. The primary peak of (unconditional) mean TC rain rate occurs in the early morning (06 LT) and the afternoon (15 LT) over the ocean and land, respectively. Both the total and heavy TC precipitation extend further inland in the afternoon, while nocturnal heavy TC rain is more confined to the coast. A significant semidiurnal cycle of TC precipitation is observed over the ocean, i.e., a secondary peak near 18 LT. The diurnal cycle of TC rainfall also depends on precipitation frequency, intensity, and radial distance from the TC center. Over the ocean, though TC precipitation intensity shows a pronounced diurnal cycle, its precipitation frequency exhibits virtually no diurnal variation. Over land, TC precipitation frequency markedly peaks in the afternoon (15 LT), while its precipitation intensity interestingly maximizes in the early morning (03-06 LT). Diurnal variations of TC asymmetric rainfall structure are consistent with diurnal changes of vertical wind shear. Over the SCS, maximum precipitation located in the downshear-left quadrant and is the most extensive in the morning. However, this heavy rain area shrinks and shifts downshear-ward in the afternoon, consistent with changes of the magnitude (reduced) and direction (clockwise) of shear. In contrast, TCs over the open ocean of NWP (OWP) have little diurnal variability of precipitation asymmetry, due mainly to a diurnally invariant shear environment.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3