Affiliation:
1. 1 Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
2. 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
Abstract
AbstractFollowing on our study of hail for the Southern Great Plains (SGP), we investigated the spatial and temporal hail trends and variabilities for the Northern Great Plains (NGP) and the contributing factors for summers (June–August) focusing on the period of 2004–2016 using two independent hail datasets. Analysis for an extended period (1994–2016) with the hail reports was also conducted to more reliably investigate the contributing factors. Both severe hail (1″ < diameter ≤ 2″) and significant severe hail (SSH; diameter > 2″) were examined and similar results were obtained. The occurrence of hail over the NGP demonstrated a large interannual variability, with a positive slope overall. Spatially, the increase is mainly located in the western part of Nebraska, South Dakota, and North Dakota. We find the three major dynamical factors that most likely contribute to the hail interannual variability in the NGP are the El Niño-Southern Oscillation (ENSO), North Atlantic subtropical high (NASH), and low-level jet (LLJ). With a thermodynamical variable integrated water vapor transport that is strongly controlled by LLJ, the four factors can explain 78% of the interannual variability in the number of SSH reports. Hail occurrences in the La Niña years are higher than the El Niño years since the jet stream is stronger and NASH extends further into the southeastern United States, thereby strengthening the LLJ and in turn water vapor transport. Interestingly, the important factors impacting hail interannual variability over the NGP are quite different from those for the SGP, except for ENSO.
Publisher
American Meteorological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献