Impact of Stochastic Physics and Model Resolution on the Simulation of Tropical Cyclones in Climate GCMs

Author:

Vidale Pier Luigi1,Hodges Kevin12,Vannière Benoit1,Davini Paolo3,Roberts Malcolm J.4,Strommen Kristian5,Weisheimer Antje67,Plesca Elina1,Corti Susanna3

Affiliation:

1. a NCAS-Climate, Department of Meteorology, University of Reading, Reading, United Kingdom

2. b Department of Meteorology, University of Reading, Reading, United Kingdom

3. c Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Torino, Italy

4. d Met Office Hadley Centre, United Kingdom

5. e Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

6. f NCAS, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

7. g ECMWF, Reading, United Kingdom

Abstract

AbstractThe role of model resolution in simulating geophysical vortices with the characteristics of realistic tropical cyclones (TCs) is well established. The push for increasing resolution continues, with general circulation models (GCMs) starting to use sub-10-km grid spacing. In the same context it has been suggested that the use of stochastic physics (SP) may act as a surrogate for high resolution, providing some of the benefits at a fraction of the cost. Either technique can reduce model uncertainty, and enhance reliability, by providing a more dynamic environment for initial synoptic disturbances to be spawned and to grow into TCs. We present results from a systematic comparison of the role of model resolution and SP in the simulation of TCs, using EC-Earth simulations from project Climate-SPHINX, in large ensemble mode, spanning five different resolutions. All tropical cyclonic systems, including TCs, were tracked explicitly. As in previous studies, the number of simulated TCs increases with the use of higher resolution, but SP further enhances TC frequencies by ~30%, in a strikingly similar way. The use of SP is beneficial for removing systematic climate biases, albeit not consistently so for interannual variability; conversely, the use of SP improves the simulation of the seasonal cycle of TC frequency. An investigation of the mechanisms behind this response indicates that SP generates both higher TC (and TC seed) genesis rates, and more suitable environmental conditions, enabling a more efficient transition of TC seeds into TCs. These results were confirmed by the use of equivalent simulations with the HadGEM3-GC31 GCM.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3