RARE: The Regional Arctic Reanalysis

Author:

Carton James A.1,Chepurin Gennady A.1

Affiliation:

1. a Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract This paper describes the new Regional Arctic Ocean/sea ice Reanalysis (RARE) with a domain that spans a subpolar/polar cap poleward of 45°N. Sequential data assimilation constrains temperature and salinity using World Ocean Database profiles as well as in situ and satellite SST, and PIOMAS sea ice thickness estimates. The 41-yr (1980–2020) RARE1.15.2 reanalysis with resolution varying between 2 and 5 km horizontally and 1–10 m vertically in the upper 100 m is examined. To explore the impact of resolution RARE1.15.2 is compared to a coarser-resolution SODA3.15.2, which uses the same modeling and data assimilation system. Improving resolution in the reanalysis system improves agreement with observations. It produces stronger more compact currents, enhances eddy kinetic energy, and strengthens along-isopycnal heat and salt transports, but reduces vertical exchanges and thus strengthens upper ocean haline stratification. RARE1.15.2 and SODA3.15.2 are also compared to the Hadley Center EN4.2.2 statistical objective analysis. In regions of reasonable data coverage such as the Nordic seas the three products produce similar time-mean distributions of temperature and salinity. But in regions of poor coverage and in regions where the coverage changes in time EN4.2.2 suffers more from those inhomogeneities. Finally, the impact on the Arctic of interannual temperature fluctuations in the subpolar gyres on the Arctic Ocean is compared. The influence of the subpolar North Pacific is limited to a region surrounding Bering Strait. The influence of the subpolar North Atlantic, in contrast, spreads throughout the Nordic seas and Barents Sea in all three products within two years. Significance Statement The Arctic Ocean/sea ice system plays crucial roles in climate variability and change by controlling the northern end of the oceanic overturning circulation, the equator to pole air pressure gradient, and Earth’s energy balance. Yet the historical ocean observation set is sparse and inhomogeneous, while ocean dynamics has challengingly fine horizontal and vertical scales. This paper introduces a new Regional Arctic Ocean/sea ice Reanalysis (RARE) whose goal is to use the combined constraints of mesoscale ocean dynamics, historical observations, surface meteorology, and continental runoff in a data assimilation framework to reconstruct historical variability. RARE is used to produce a 41-yr ocean/sea ice reanalysis 1980–2020 whose results are described here.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. The Arctic Circumpolar Boundary Current;Aksenov, Y.,2011

2. Argo, 2000: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed 1 July 2022, https://doi.org/10.17882/42182.

3. Land ice freshwater budget of the Arctic and North Atlantic Oceans. Part I: Data, methods and results;Bamber, J. L.,2018

4. UDASH—Unified Database for Arctic and Subarctic Hydrography;Behrendt, A.,2018

5. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010;Beszczynska-Möller, A.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3