The Impact of Interacting Climate Modes on East Australian Precipitation Moisture Sources

Author:

Holgate Chiara12ORCID,Evans Jason P.23,Taschetto Andréa S.23,Gupta Alex Sen23,Santoso Agus234

Affiliation:

1. a Fenner School of Environment and Society, Australian National University, Canberra, Australia

2. b ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia

3. c Climate Change Research Centre, University of New South Wales, Sydney, Australia

4. d Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Australia

Abstract

Abstract Modes of climate variability can drive significant changes to regional climate affecting extremes such as droughts, floods, and bushfires. The need to forecast these extremes and expected future increases in their intensity and frequency motivates a need to better understand the physical processes that connect climate modes to regional precipitation. Focusing on east Australia, where precipitation is driven by multiple interacting climate modes, this study provides a new perspective into the links between large-scale modes of climate variability and precipitation. Using a Lagrangian back-trajectory approach, we examine how El Niño–Southern Oscillation (ENSO) modifies the supply of evaporative moisture for precipitation, and how this is modulated by the Indian Ocean dipole (IOD) and southern annular mode (SAM). We demonstrate that La Niña modifies large-scale moisture transport together with local thermodynamic changes to facilitate local precipitation generation, whereas below-average precipitation during El Niño stems predominantly from increased regional subsidence. These dynamic–thermodynamic processes were often more pronounced during co-occurring La Niña/negative IOD and El Niño/positive IOD periods. As the SAM is less strongly correlated with ENSO, the impact of co-occurring ENSO and SAM largely depended on the state of ENSO. La Niña–related processes were exacerbated when combined with +SAM and dampened when combined with −SAM, and vice versa during El Niño. This new perspective on how interacting climate modes physically influence regional precipitation can help elucidate how model biases affect the simulation of Australian climate, facilitating model improvement and understanding of regional impacts from long-term changes in these modes. Significance Statement How climate modes modulate the oceanic and terrestrial sources of moisture for rainfall in east Australia is investigated. East Australia is wetter during La Niña because more moisture is transported into the region and is more easily turned into rainfall when it arrives, whereas drier conditions during El Niño are because local conditions inhibit the conversion of moisture into rainfall. Distant atmospheric changes over the Indian and Southern Oceans can intensify these changes. Our results can be used to better understand and predict the regional impact of long-term changes in these modes of climate variability, which are potentially altered under climate change.

Funder

Australian National University AGRT Scholarship

ARC Centre of Excellence for Climate System Science

Centre for Southern Hemisphere Oceans Research

ARC Centre of Excellence for Climate Extremes

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3