Energy Flow Diagnosis of ENSO from an Ocean Reanalysis

Author:

Toyoda Takahiro1,Nakano Hideyuki1,Aiki Hidenori2,Ogata Tomomichi3,Fukutomi Yoshiki2,Kanno Yuki4,Urakawa L. Shogo1,Sakamoto Kei1,Yamanaka Goro1,Nagura Motoki5

Affiliation:

1. a Department of Atmosphere, Ocean and Earth System Modeling Research, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

2. b Institute for Space–Earth Environmental Research, Nagoya University, Nagoya, Japan

3. c Application Laboratory, Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokohama, Japan

4. d Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan

5. e Global Ocean Observation Research Center, Research Institute for Global Change, JAMSTEC, Yokosuka, Japan

Abstract

AbstractA method is introduced for diagnosing the time evolution of wave energy associated with ENSO from an ocean reanalysis. In the diagnosis, time changes of kinetic and available potential energy are mainly represented by energy inputs caused by surface wind stress and horizontal energy fluxes for each vertically decomposed normal mode. The resulting time evolutions of the wave energy and vertical thermocline displacements in the 1997/98 and 2014–16 El Niño events are consistent with our previous knowledge of these events. Further, our result indicated that representation of several vertical modes is necessary to reproduce the broadly distributed downward thermocline displacements in the central to eastern equatorial Pacific, generated by a westerly wind event in the western equatorial Pacific (e.g., in March 1997), that are preconditioning for El Niño development. In addition, we investigated the wave energy budget, including the influence of data assimilation, on the complicated time evolution of equatorial thermocline displacements caused by repeated westerly and easterly wind events during the 2014–16 El Niño event. Our result suggests that noise from a momentum imbalance near the equator associated with data assimilation, which possibly affected the El Niño prediction failure in 2014, was much reduced by our developed ocean data assimilation system and reanalysis. This study, which provides a new connection between the theoretical works and reanalysis products that use sophisticated systems for synthesizing OGCMs and observations, should be useful for climate research and operational communities interested in ENSO.

Funder

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3