Predictable and Unpredictable Components of Cape Town Winter Rainfall

Author:

Cash Benjamin A.12ORCID,Burls Natalie J.12,Howar Laila V.3

Affiliation:

1. a Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

2. b Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

3. c Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland

Abstract

Abstract In early 2018, due in part to a severe and extended meteorological drought, Cape Town was at risk of being one of the first major metropolitan areas in the world to run out of water. The magnitude of the crisis was exacerbated by the fact that such a prolonged and severe drought was both unanticipated and unpredicted. In this work, we analyze data from both observations and seasonal forecasts made as part of the North American Multimodel Ensemble (NMME) to better understand the predictability of rainfall in the Cape Town (CT) region. We find that there are statistically significant correlations between observed CT rainfall and sea surface temperatures in the tropical Atlantic (∼0.45) as well as a pattern of 200-mb geopotential height (z200) anomalies resembling the Southern Annular Mode (SAM; ∼0.4). Examination of hindcasts from the NMME demonstrates that the models accurately reproduce the observed correlation between CT rainfall and z200 anomalies. However, they fail to reproduce correlations between CT rainfall and the tropical South Atlantic. Decomposition of the correlations into contributions from predictable and unpredictable components indicates that CT rainfall in the models is dominated by unpredicted atmospheric variability (correlation ∼ 0.84) relative to predicted (correlation ∼ 0.14), which may be related to the failure to simulate the connection with the tropical Atlantic. Significance Statement Water crises are occurring with increasing severity and frequency around the globe. The ability to accurately forecast wet season rainfall would be invaluable to water managers and other decision-makers. Here, we explore the reasons behind the failure of a suite of operational seasonal forecast models to accurately predict rainfall in the Cape Town region of South Africa.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference46 articles.

1. Evolution of the Southern Annular Mode during the past millennium;Abram, N. J.,2014

2. The changing width of Earth’s tropical belt;Birner, T.,2014

3. Relationships between Antarctic sea-ice and South African winter rainfall;Blamey, R.,2007

4. Mesoscale convective complexes over southern Africa;Blamey, R.,2012

5. The Cape Town “day zero” drought and Hadley cell expansion;Burls, N. J.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3