Cause of the Intense Tropics-Wide Tropospheric Warming in Response to El Niño

Author:

Hogikyan A.1ORCID,Resplandy L.23,Fueglistaler S.12

Affiliation:

1. a Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

2. b Geosciences Department, Princeton University, Princeton, New Jersey

3. c High Meadows Environmental Institute, Princeton University, Princeton, New Jersey

Abstract

Abstract During El Niño events, a strong tropics-wide warming of the free troposphere is observed (of order 1 K at 300 hPa). This warming plays an important role for the teleconnection processes associated with El Niño but it remains unclear what initiates this warming. Since convective quasi-equilibrium only holds in regions of deep convection, the strong free-tropospheric warming implies that the warmest surface waters (where atmospheric deep convection occurs) must warm during El Niño. We analyze the evolution of the oceanic mixed layer heat budget over El Niño events as function of sea surface temperature (SST). Data from the ERA5 and an unforced simulation of a coupled climate model both confirm that SSTs during an El Niño event increase at the high end of the SST distribution. The data show that this is due to an anomalous heat flux from the atmosphere into the ocean caused by a decrease in evaporation due anomalously weak low-level winds (i.e., relative to the wind speed observed in the domain of deep convection in the climatological base state). It is hypothesized that the more zonally symmetric circulation during El Niño is responsible for the weakening of low-level winds. The result of a substantial heat flux into the ocean in the domain of atmospheric deep convection (the opposite of the canonical heat flux out of the ocean into the atmosphere observed in the cold eastern Pacific) caused by a decrease in low-level wind speed implies that the prominent tropospheric warming results from mechanical forcing.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference170 articles.

1. The equatorial Atlantic oscillation and its response to ENSO;Latif;Climate Dyn.,2000

2. Observational evidence for two modes of coupling between sea surface temperatures, tropospheric temperature profile, and shortwave cloud radiative effect in the tropics;Fueglistaler;Geophys. Res. Lett.,2019

3. andK Quasi equilibrium thinking General Model Past Future Academic;Randall;Circulation Development Present,2000

4. How tropical convection couples high moist static energy over land and ocean;Zhang;Geophys. Res. Lett.,2020

5. Climate impacts from large volcanic eruptions in a high-resolution climate model: The importance of forcing structure;Yang;Geophys. Res. Lett.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3