Structures and Mechanisms of Heatwaves Related to Quasi-Biweekly Variability over Southern China

Author:

Zheng Bin1,Gu Dejun1,Lin Ailan1,Peng Dongdong1,Li Chunhui1,Huang Yanyan1

Affiliation:

1. a Guangzhou Institute of Tropical and Marine Meteorology (ITMM), China Meteorological Administration, and Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Guangzhou, China

Abstract

Abstract In the present study, the structures and mechanisms of the heatwaves (HWs) associated with the quasi-biweekly (QBW; 10–20-day period) variability (QBW-HW) over southern China (SC; 106°–120°E, 21°–30°N) are investigated by using observation data from surface stations in China and the related gridded dataset (CN05.1), and the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis. We found that the strongest anticyclonic anomaly and subsidence appear over SC during the developing phase of QBW-HW, and then induced excess solar radiation at surface and significant diabatic heating lead to a positive surface air temperature change, thus favoring occurrence of QBW-HW over SC. In addition, we found a wet near-surface atmosphere in the QBW-HW events over SC, and further confirmed that near-surface moisture should play an important role in the occurrence of QBW-HW, via absorptions of longwave and shortwave radiation. This result is quite different from previous studies since they did not pay attention to the near-surface moisture. On the other hand, warmer SAT favors more water vapor evaporated from the moist soil when considering the Clausius–Clapeyron relationship. Then, the positive feedback processes promote the occurrence of QBW-HW over SC. In contrast, during the developing and warm phases of QBW-HW over SC, except for the near-surface level, the troposphere is in a dry condition, even at 850 and 700 hPa. In the QBW-HW events over SC, the factor responsible for the wet near-surface atmosphere is the enhanced surface evaporation, which is attributed to strengthened surface wind speed and background moist soil. Significance Statement Under the background of global warming, heatwaves over Southern China are experiencing an increasing trend. In this study, we want to understand the structures and mechanisms of the heatwaves related to 10–20-day (quasi-biweekly) variability. We that found some structures of heatwaves (e.g., anticyclonic anomalies along with subsidence) are consistent with previous studies. In addition, we also show that the moist soil and increased induced near-surface moisture play a key role in the occurrence of heatwaves over Southern China, via enhanced absorptions of longwave and shortwave radiation. This study is helpful for understanding the processes and prediction of heatwaves over Southern China. Future work should examine the findings by some numerical experiments with a climate model.

Funder

the National Key R&D Program of China

the Guangdong Basic and Applied Basic Research Foundation

the National Natural Science Foundation of China

the Guangdong Basic and Applied Basic Research Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. On the climate response to zero ozone;Bordi, I.,2012

2. Comparisons of the circulation anomalies associated with extreme heat weather in different regions in eastern China;Chen, R.,2015

3. Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China;Chen, R.,2016

4. Causes of the extreme hot midsummer in Central and South China during 2017: Role of the western tropical Pacific warming;Chen, R.,2019

5. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system;Dee, D. P.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3