Dynamical Analysis of the Winter Middle East Jet Stream and Comparison with the East Asian and North American Jet Streams

Author:

Ren Qiaoling1,Wei Wei12,Lu Mengmeng23,Yang Song12

Affiliation:

1. a School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

2. b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

3. c State Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Abstract

Abstract The wintertime Middle East jet stream (MEJS) is an important upstream signal for the East Asian winter monsoon and the subsequent Asian summer monsoon. Thus, the maintenance and interannual variations of the MEJS as well as its similarities and differences with the East Asian jet stream (EAJS) and the North American jet stream (NAJS) are studied dynamically using the geopotential tendency equation and empirical orthogonal function analysis. Analysis reveals that the MEJS is mainly maintained by tropical diabatic heating and the low-frequency transient eddy (TE) vorticity forcing. It is different from the EAJS, which is maintained by both tropical diabatic heating and high-frequency TE vorticity forcing, and the NAJS, which is mainly sustained by high-frequency TE vorticity forcing. Furthermore, while temperature advection plays a considerable role in the maintenance of EAJS and NAJS, it is less important for the MEJS. On interannual time scales, the meridional shift of the MEJS is related to low-frequency TE heating, while the variation of the jet’s intensity is associated with temperature advection. For both EAJS and NAJS, the interannual variations are mainly contributed by high-frequency TE vorticity forcing, although temperature advection also promotes their meridional shifts. These results suggest that whether or not the maintenance of the jet streams is related to tropical diabatic heating, their interannual variations are not directly induced by this forcing. Significance Statement The wintertime Middle East jet stream (MEJS) is a narrow and strong westerly wind belt over the Middle East whose variations in intensity and location can affect the Asian monsoon significantly. However, little effort has been devoted to investigating the MEJS. Thus, dynamical diagnosis and statistical analysis are applied in this study to understand the MEJS and its variability comprehensively. Analysis reveals that low-frequency transient eddies, which are the mobile atmospheric systems with a lifespan longer than 10 days, are important for both the maintenance and the interannual variability of the MEJS. This phenomenon is apparently different from the East Asian and North American jet streams, in which synoptic transient eddies (lifetime shorter than 10 days) play an essential role.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3