Interannual Variability of the Warm Arctic–Cold North American Pattern

Author:

Yu Bin1ORCID,Lin Hai2

Affiliation:

1. a Climate Research Division, Environment and Climate Change Canada, Toronto, Canada

2. b Meteorological Research Division, Environment and Climate Change Canada, Dorval, Canada

Abstract

Abstract This study examines the evolution of the interannual warm Arctic–cold continents (WACC) pattern over the North American sector, which refers to the warm Arctic–cold North American pattern (WACNA), and explores its driving mechanism. WACNA features a pair of opposite surface air temperature anomalies centered over the Chukchi–Bering Seas and the North American Great Plains. A negative phase of the warm Arctic–cold Eurasia (WACE) pattern tends to lead a positive phase of the WACNA pattern by about 25 days. Negative Asian–Bering–North American (ABNA)- and Pacific–North American (PNA)-like atmospheric circulation patterns also appear upstream and precede a positive WACNA by about 25 days, gradually develop, reach their peaks when both circulation patterns lead the WACNA by 5 days, and weaken afterward. The negative ABNA-like pattern can be driven by the Siberian snow decline that is related to a negative WACE pattern and its featured Eurasian warming, whereas the negative PNA-like pattern is influenced by negative SST anomalies over the tropical central-eastern Pacific Ocean that resemble the tropical ENSO variability. The surface signatures of both patterns highlight a horseshoe-shaped high pressure anomaly straddling over the Gulf of Alaska, Alaska, and northwestern Canada. The anomalous warm advection from the North Pacific and cold advection from the Arctic that follow the circulation anomalies, as well as sea ice declines over the Chukchi–Bering Seas and growth over Hudson Bay, lead to the formation of the positive WACNA pattern. Processes with circulation anomalies of opposite signs will likewise lead to the negative WACNA pattern.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3