Predictability of U.S. Regional Extreme Precipitation Occurrence Based on Large-Scale Meteorological Patterns (LSMPs)

Author:

Gao Xiang1,Mathur Shray2

Affiliation:

1. 1 Joint Program on the Science and Policy of Global Change Massachusetts Institute of Technology, Cambridge, Massachusetts

2. 2 Department of Computer Science and Information Systems Birla Institute of Technology and Science, Pilani, India

Abstract

AbstractIn this study, we use analogue method and Convolutional Neural Networks (CNNs) to assess the potential predictability of extreme precipitation occurrence based on Large-Scale Meteorological Patterns (LSMPs) for the winter (DJF) of Pacific Coast California (PCCA) and the summer (JJA) of Midwestern United States (MWST). We evaluate the LSMPs constructed with a large set of variables at multiple atmospheric levels and quantify the prediction skill with a variety of complementary performance measures. Our results suggest that LSMPs provide useful predictability of daily extreme precipitation occurrence and its interannual variability over both regions. The 14-year (2006-2019) independent forecast shows Gilbert Skill Scores (GSS) in PCCA range from 0.06 to 0.32 across 24 CNN schemes and from 0.16 to 0.26 across 4 analogue schemes, in contrast to those from 0.1 to 0.24 and from 0.1 to 0.14 in MWST. Overall, CNN is shown to be more powerful in extracting the relevant features associated with extreme precipitation from the LSMPs than analogue method, with several single-variate CNN schemes achieving more skillful prediction than the best multi-variate analogue scheme in PCCA and more than half of CNN schemes in MWST. Nevertheless, both methods highlight the Integrated Vapor Transport (IVT, or its zonal and meridional components) enables higher skills than other atmospheric variables over both regions. Warm-season extreme precipitation in MWST presents a forecast challenge with overall lower prediction skill than in PCCA, attributed to the weak synoptic-scale forcing in summer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3