Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China

Author:

Shen Xiangjin1,Liu Binhui2,Henderson Mark3,Wang Lei1,Jiang Ming1,Lu Xianguo1

Affiliation:

1. a Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China

2. b College of Forestry, Northeast Forestry University, Harbin, China

3. c Public Policy Program and Environmental Studies Program, Mills College, Oakland, California

Abstract

Abstract Vegetation activity and phenology are significantly affected by climate change, and changes in vegetation activity and phenology can in turn affect regional or global climate patterns. As one of the world’s great biomes, temperate grasslands have undergone remarkable changes in recent decades, but the connections between vegetation activity and phenology changes and regional climate there have remained unclear. Using the observation minus reanalysis (OMR) method, this study investigated the possible effects of vegetation activity and vegetation growing season changes on air temperatures in temperate grasslands of China. The results showed that average NDVI of the temperate grassland significantly increased by 0.011 decade−1 for the growing season during 1982–2015. The growing season started earlier and ended later, resulting in an extension. Increased vegetation activity during spring and autumn significantly warmed spring and autumn air temperatures by reducing albedo. By contrast, summer greening had no significant effect on summer temperature, due to the opposing effects of decreased albedo and enhanced evapotranspiration on temperature. The earlier start and later end of the growing season contributed to warmer spring and autumn air temperatures. As phenological changes had no significant effect on summer temperature, the extended growing season warmed air temperature. Our results suggest that the climate change–induced increasing vegetation activity and extended growing seasons can further aggravate regional warming in temperate grasslands of China, implying that the effects of vegetation activity and phenology changes on regional climate should be considered in climate models for accurately simulating climate change in temperate grasslands.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3