Seasonal Dependence of TC–ISO Relationship and Its Potential Effect on the Intensification of TCs in the Western North Pacific since the Early 2000s

Author:

Hong Chi-Cherng1ORCID,Chang Chi-Chun1,Chen Kuan-Chieh2,Tsou Chih-Hua2

Affiliation:

1. a Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan

2. b Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Abstract

Abstract This study reported that the intensification of tropical cyclones (TCs) to major TCs (MTCs) in the western North Pacific (WNP) region exhibited strong difference between boreal autumn (SON) and summer (JJA) since the early 2000s; the ratio of MTCs to the total number of TCs (MTC ratio) has continuously increased in SON but not in JJA. Due to this difference, more MTCs form and pass through the western flank of the WNP region in SON. The increase of the MTC ratio in SON was associated with interdecadal variability in TC activity and 30–60-day intraseasonal oscillations (ISOs) variability. The mean genesis location of TCs and ISOs accompanied by a negative outgoing longwave radiation anomaly shrunk and shifted westward simultaneously in SON since the early 2000s due to the westward extension of the WNP subtropical high. However, this change was not observed in JJA. This westward shift of ISO substantially modulated large-scale thermodynamic and dynamic conditions, which in turn enhanced the TC–ISO interaction and accelerated energy conversion between TC and ISO. The kinetic energy budget along the MTC track was further analyzed to understand the TC–ISO interaction. Both the lower-level barotropic energy conversion (CK) and upper-level baroclinic energy conversion (CE) contributed to the intensification of TCs. CK mainly resulted from the scale interaction between TCs and ISO, whereas CE resulted from TC-related perturbations. Significant Statement This study reported the seasonality of TC intensification in the WNP during the early 2000s. Here, we extended the previous work to present that the interdecadal increase of the ratio of TC developing to major TC (MTC; ≥category 3; referred to MTC ratio) exhibits strong seasonal dependence. That is, the MTC ratio stays stationary approximately in 30% for JJA, but it jumps from 40% to 50% in SON. Consequently, more MTCs form and pass through the western flank of the WNP region in SON. The possible physical processes behind the increase of MTC ratio were discussed. These results may advance our knowledge about the TC intensification and were helpful for TC prediction.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Western North Pacific tropical cyclone intensity and ENSO;Camargo, S. J.,2005

2. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis;Camargo, S. J.,2007

3. Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific;Chan, J. C.,2005

4. The association of typhoon intensity increase with translation speed increase in the South China Sea;Chang, Y. T.,2020

5. Emergent constraints on future projections of the western North Pacific subtropical high;Chen, X.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3