Tropical Intraseasonal Variability Response to Zonally Asymmetric Forcing in an Idealized Moist GCM

Author:

MacDonald Cameron G.1ORCID,Ming Yi2

Affiliation:

1. a Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

2. b NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract The tropical intraseasonal variability in an idealized moist general circulation model (GCM) coupled to a slab ocean is investigated. The model has a simple moist convection scheme and realistic radiative transfer, but no parameterization of cloud processes. In a zonally symmetric aquaplanet state, variability is dominated by westward-propagating Rossby waves. Enforcing zonal asymmetry through the application of a prescribed ocean heat flux in the bottom boundary leads to the development of a slow, eastward propagating mode that bears some of the characteristics of the observed Madden–Julian oscillation (MJO). When the ocean heat flux is made stronger, high-frequency Kelvin waves exist alongside the MJO mode. The strength of the disturbances and the spatial distribution of their precipitation anomalies are sensitive to the strength of intraseasonal sea surface temperature (SST) anomalies. The greatest resemblance to the MJO is observed when shallow slab ocean depths (1 m) are used, but the mode still exists at deeper slabs. Sensitivity experiments to the parameters of the convection scheme suggest that the simulated MJO mode couples to convection in a way that is distinct from both Kelvin and Rossby waves generated by the model. Analysis of the column moist static energy (CMSE) budget of the MJO mode suggests that column radiative heating plays only a weak role in destabilizing the mode relative to the stabilizing contribution of vertical advection. The CMSE budget analysis highlights the importance of the life cycle of horizontal advection for the destabilization and propagation of the MJO. Synergies between the generated MJO mode and linear theories of the MJO are discussed as well.

Funder

National Oceanic and Atmospheric Administration

Cooperative Institute for Modeling the Earth System, Princeton University

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference90 articles.

1. Precipitation budget of the Madden–Julian Oscillation;Adames, Á. F.,2017

2. Three-dimensional structure and evolution of the MJO and its relation to the mean flow;Adames, Á. F.,2014a

3. Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO;Adames, Á. F.,2014b

4. Three-dimensional structure and evolution of the moisture field in the MJO;Adames, Á. F.,2015

5. The MJO as a dispersive, convectively coupled moisture wave: Theory and observations;Adames, Á. F.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3