Upstream Large-Scale Control of Subtropical Low-Cloud Climatology

Author:

Lewis Hamish1,Bellon Gilles12,Dinh Tra1

Affiliation:

1. a Department of Physics, University of Auckland, Auckland, New Zealand

2. b Centre National de Recherches Météorologiques, Université de Toulouse, Météo France, CNRS, Toulouse, France

Abstract

Abstract This study investigates the impact of the adjustment times of the atmospheric boundary layer (ABL) on the control of low-cloud coverage (LCC) climatology by large-scale atmospheric conditions in the subtropics. Using monthly data, we calculate back-trajectories and use machine learning statistical models with feature selection capabilities to determine the influence of local and upstream large-scale conditions on LCC for four physical cloud regimes: the stratocumulus (Sc) deck, the along-flow transition into the Sc deck (“Inflow”), the Sc-to-cumulus transition, and trade-cumulus clouds. All four regimes have unique local and upstream relationships with the large-scale meteorological variables within our parameter space, with upstream controls of LCC being the dominant processes in Sc deck and Sc-to-cumulus transition regimes. The time scales associated with these upstream controls across all regimes are consistent with known adjustment time scales of the ABL, determined in both modeling and observational studies. We find that low-level thermodynamic stratification (estimated inversion strength) is not the most important large-scale variable for LCC prediction in transition and trade-cumulus regimes despite its ubiquitous use as a proxy for LCC throughout the subtropics. Including upstream control provides significant improvements to the skill of statistical models predicting monthly LCC, increasing explained variance on the order of 15% in the Inflow, Sc deck, and transition regimes, but provides no improvement in the trade-cumulus regime.

Funder

Marsden Fund

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. Using the sensitivity of large-eddy simulations to evaluate atmospheric boundary layer models;Bellon, G.,2012

2. Time scales of the trade wind boundary layer adjustment;Bellon, G.,2013

3. How finely do we need to represent the stratocumulus radiative effect?;Bellon, G.,2016a

4. Stratocumulus radiative effect, multiple equilibria of the well-mixed boundary layer and transition to shallow convection;Bellon, G.,2016b

5. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models;Bony, S.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3