Affiliation:
1. University of Hamburg, Institute for Oceanography, Bundesstrasse 53, 20146 Hamburg, Germany.
Abstract
AbstractWe investigate mechanisms underlying salinity changes projected to occur under strong representative concentration pathway (RCP) 8.5 forcing conditions. The study is based on output of the Max Planck Institute Earth System Model Mixed Resolution (MPI-ESM-MR) run with an ocean resolution of 0.4°. In comparison to the present-day oceanic conditions, sea surface salinity (SSS) increases towards the end of the 21st century in the tropical and the subtropical Atlantic. In contrast, a basin-wide surface freshening can be observed in the Pacific and Indian Oceans. The RCP8.5 scenario of the MPI-ESM-MR with a global surface warming of ~2.3°C marks a water cycle amplification of 19 %, which is equivalent to ~8%°C−1 and thus close to the water cycle amplification predicted according to the Clausius–Clapeyron (CC) relationship (~7%°C−1). Large scale global SSS changes are driven by adjustments of surface freshwater fluxes. On smaller spatial scales, it is predominantly advection related to circulation changes that affects near-surface SSS. With respect to subsurface salinity, it is changes in surface freshwater flux that drive their changes over the upper 500 m of the subtropical Pacific and Indian oceans by forcing changes in water mass formation (spice signal). In the subtropical Atlantic Ocean, in contrast, the dynamical response associated with wind stress, circulation changes and associated heaving of isopycnals is equally important in driving subsurface salinity changes over the upper 1000 m.
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献