Ocean Salinity changes in the global ocean under global warming conditions Part 1: Mechanisms in a strong warming scenario

Author:

Sathyanarayanan Anju1,Köhl Armin1,Stammer Detlef1

Affiliation:

1. University of Hamburg, Institute for Oceanography, Bundesstrasse 53, 20146 Hamburg, Germany.

Abstract

AbstractWe investigate mechanisms underlying salinity changes projected to occur under strong representative concentration pathway (RCP) 8.5 forcing conditions. The study is based on output of the Max Planck Institute Earth System Model Mixed Resolution (MPI-ESM-MR) run with an ocean resolution of 0.4°. In comparison to the present-day oceanic conditions, sea surface salinity (SSS) increases towards the end of the 21st century in the tropical and the subtropical Atlantic. In contrast, a basin-wide surface freshening can be observed in the Pacific and Indian Oceans. The RCP8.5 scenario of the MPI-ESM-MR with a global surface warming of ~2.3°C marks a water cycle amplification of 19 %, which is equivalent to ~8%°C−1 and thus close to the water cycle amplification predicted according to the Clausius–Clapeyron (CC) relationship (~7%°C−1). Large scale global SSS changes are driven by adjustments of surface freshwater fluxes. On smaller spatial scales, it is predominantly advection related to circulation changes that affects near-surface SSS. With respect to subsurface salinity, it is changes in surface freshwater flux that drive their changes over the upper 500 m of the subtropical Pacific and Indian oceans by forcing changes in water mass formation (spice signal). In the subtropical Atlantic Ocean, in contrast, the dynamical response associated with wind stress, circulation changes and associated heaving of isopycnals is equally important in driving subsurface salinity changes over the upper 1000 m.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3