Increased sea-level sensitivity to CO2 forcing across the Middle Pleistocene Transition from ice-albedo and ice-volume nonlinearities

Author:

Liautaud Parker1,Huybers Peter1

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02142

Abstract

AbstractProxy reconstructions indicate that sea level responded more sensitively to CO2 radiative forcing in the late Pleistocene than in the early Pleistocene, a transition that was proposed to arise from changes in ice-sheet dynamics. In this study we analyse the links between sea level, orbital variations, and CO2 using an energy-balance model having a simple ice sheet. Model parameters, including for age models, are inferred over the late Pleistocene using a hierarchical Bayesian method, and the inferred relationships are used to evaluate CO2 levels over the past 2 My in relation to sea level. Early-Pleistocene model CO2 averages 246 ppm (244 ppm - 249 ppm 95% c.i.) across 2-1 Ma and indicates that sea level was less sensitive to radiative forcing than in the late Pleistocene, consistent with foregoing δ11B-derived estimates. Weaker early-Pleistocene sea-level sensitivity originates from a weaker ice-albedo feedback and the fact that smaller ice sheets are thinner, absent changes over time in model equations or parameters. An alternative scenario involving thin and expansive early-Pleistocene ice sheets, in accord with some lines of geologic evidence, implies 15 ppm lower average CO2 or ~10-15 m higher average sea level during the early Pleistocene relative to the original scenario. Our results do not rule out dynamical transitions during the middle Pleistocene, but indicate that variations in the sea-level response to CO2 forcing over the past 2 My can be explained on the basis of nonlinearities associated with ice-albedo feedbacks and ice-sheet geometry that are consistently present across this interval.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Mid-Pleistocene Climate Transition;Annual Review of Earth and Planetary Sciences;2023-05-31

2. The Bering Strait was flooded 10,000 years before the Last Glacial Maximum;Proceedings of the National Academy of Sciences;2022-12-27

3. Uniformitarian Prediction of Early‐Pleistocene Atmospheric CO 2;Geophysical Research Letters;2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3