On Objective Identification of Atmospheric Fronts and Frontal Precipitation in Reanalysis Datasets

Author:

Soster Frederick1,Parfitt Rhys1

Affiliation:

1. a Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Abstract

Abstract Reanalysis datasets are frequently used in the study of atmospheric variability owing to their length of record and gridded global coverage. In the midlatitudes, much of the day-to-day atmospheric variability is associated with atmospheric fronts. These fronts are also responsible for the majority of precipitation in the midlatitudes, and are often associated with extreme weather, flooding, and wildfire activity. As such, it is important that identification of fronts and their associated rainfall remains as consistent as possible between studies. Nevertheless, it is often the case that only one reanalysis dataset and only one objective diagnostic for the detection of atmospheric fronts is used. By applying two different frontal identification methods across the shared time period of eight reanalysis datasets (1980–2001), it is found that the individual identification of fronts and frontal precipitation is significantly affected by both the choice of identification method and dataset. This is shown to subsequently impact the climatologies of both frontal frequency and frontal precipitation globally with significant regional differences as well. For example, for one diagnostic, the absolute multireanalysis range in the global mean frontal frequency and the proportion of precipitation attributed to atmospheric fronts are 12% and 69%, respectively. A percentage reduction of 77% and 81%, respectively, in these absolute multireanalysis ranges occurs, however, upon regridding all datasets to the same coarser grid. Therefore, these findings have important implications for any study on precipitation variability and not just those that consider atmospheric fronts.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3